Utilization Of CO₂ As A Mild Oxidant For Propylene Production Via Oxidative Dehydrogenation Of Propane A. Florou¹, G. Bampos², A. Kokka¹, and P. Panagiotopoulou^{1*} ¹Technical University of Crete, School of Chemical and Environmental Engineering, Chania, Greece/European University on Responsible Consumption and Production (EURECA-PRO); ²University of Patras, Department of Chemical Engineering, Patras, Greece *To whom all correspondence should be addressed (*ppanagiotopoulou@tuc.gr*). **Keywords:** carbon dioxide; propane; propylene; oxidative dehydrogenation; composite metal oxides #### 1. Introduction Propylene (C₃H₆) is a versatile precursor for the formation of various derivatives used in our daily life (e.g. polypropylene, isopropanol, acrylonitrile etc.) and thus, it is consider as a key component of the chemical industry [1]. One of the traditional methods used for propylene production is the reaction of propane (C₃H₈) dehydrogenation, which is strongly endothermic and equilibrium limited [2]. The reaction requires high temperatures, and therefore high energy consumption, suffering from fast catalyst deactivation as well as low C₃H₈ conversions and C₃H₆ selectivities [3]. Oxidative dehydrogenation of propane in the presence of molecular oxygen has been proposed as an alternative pathway, which is an exothermic reaction, with no thermodynamic limitations, and operable at low reaction temperatures. The main drawback of the process is the deep oxidation of both C₃H₈ and C₃H₆ toward carbon monoxide (CO) and carbon dioxide (CO₂), resulting in low propylene yields [3]. Thus, replacing of molecular oxygen by a milder and readily available oxidant, such as CO₂, has recently gained interest as an alternative approach for selective propylene production [3]. This approach has the advantage that CO₂ participates both in (a) propane conversion toward propylene and (b) hydrogen consumption via the RWGS reaction, which can overcome the equilibrium limitations of propane dehydrogenation, resulting in higher propylene yields. Moreover, carbon monoxide produced via both reactions is a valuable byproduct, which can be utilized in chemical synthesis. The major benefit of the proposed process is the utilization of CO₂, the emissions of which in the atmosphere have increased rapidly during the last decades and, in nowadays, it is considered as one of the main greenhouse gases resulting in global warming and therefore, major climate changes [4]. Depending on the catalyst and reaction conditions employed, the reactions of propane hydrogenolysis and propane or propylene decomposition may also take place, resulting in a decrease of propylene yield and possibly surface carbon formation [5]. Thus, the physicochemical characteristics of catalyst and operating conditions should be properly selected. In the present study the oxidative dehydrogenation of propane (ODP) with CO₂ was studied over 10%M_xO_y-TiO₂, 10%M_xO_y-Al₂O₃ and 10%M_xO_y-SiO₂ (M: Ga, Cr, Ca, Sn) catalysts. The ability of composite metal oxides to promote both high propane conversions and propylene yields with respect to the nature of M_xO_y additive and the support was investigated and discussed. # 2. Experimental ${\bf Acknowledgments}$ The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "2nd Call for H.F.R.I. Research Projects to support Faculty Members & Researchers" (Project Number: 3367). Co-funded by the ERASMUS+ Programme of the European Union (Contract number: 101004049—EURECA-PRO—EAC-A02-2019/EAC-A02-2019-1). Composite metal oxide powders 10 wt.% M_xO_y -TiO₂, 10 wt.% M_xO_y -Al₂O₃ and 10 wt.% M_xO_y -SiO₂ (M: Ga, Cr, Ca, Sn) were prepared employing the wet impregnation method by using commercial TiO₂, Al₂O₃ or SiO₂ powders as supports and an aqueous solution of the M_xO_y precursor salt (Ga(NO₃)₃·6H₂O, Cr(NO₃)₃, Ca(NO₃)₂·4H₂O, SnCl₂·2H₂O). The impregnation was followed by drying at 120 °C for 24 h and subsequent calcination in air at 600 °C for 3 h. Catalysts were characterized employing X-Ray Diffraction (XRD) and B.E.T measurements. Catalytic performance experiments were carried out in a fixed-bed flow reactor loaded with 0.5 g of catalyst and using a feed stream consisting of $5\%C_3H_8+25\%CO_2$ (in He) with a total flow rate of 50 cc/min. In a typical experiment the catalyst was first preheated under He flow at 450 °C for 1 h followed by a switch of the gas stream to the reaction mixture. The concentrations of reactants and products are then determined using a gas chromatograph. Similar measurements are obtained following a stepwise increase of temperature up to $750\,^{\circ}\text{C}$. ## 3. Results The specific surface area (SSA) of composite metal oxides was determined with the BET method. The SSA of bare TiO₂, Al₂O₃ and SiO₂ were found equal to 36.9, 95.7 and 222.1 m² g⁻¹, respectively. In the case of TiO₂-based oxides the SSA was varied between 33.9 m² g⁻¹ for CaO-TiO₂ and 47.9 m² g⁻¹ for Ga₂O₃-TiO₂. The addition of Cr₂O₃, Ga₂O₃, SnO₂ and CaO on Al₂O₃ surface resulted in a reduction of the SSA compared to that of bare alumina and was found equal to 77.9, 73.1, 71.1 and 35.7 m² g⁻¹, respectively. The SSA of SiO₂-based oxides was varied between 109.9 m² g⁻¹ for CaO-SiO₂ and 220.9 m² g⁻¹ for Cr₂O₃-SiO₂. XRD results showed that the diffractograms obtained for the Al₂O₃-based oxides are characterized by the crystallographic peaks attributed to cubic Al₂O₃. In the case of TiO₂-based oxides the presence of both anatase and rutile phases were identified in the obtained XRD spectra, whereas for SiO₂-based oxides no sharp peaks corresponding to SiO2 were discerned. The presence of SiO₂ was only confirmed by some relatively broad peaks in the case of bare SiO₂, Ga₂O₃-SiO₂ and CaO-SiO₂ samples. Results of catalytic performance experiments showed that the addition of metal oxides on TiO2, Al2O3 or SiO2 surface results, generally, in higher C₃H₈ conversions $(X_{\rm C3H8})$ compared to bare TiO₂, Al₂O₃ or SiO₂. In the case of M_xO_y-TiO₂ catalysts, catalytic performance is improved following the order TiO₂ (none) < SnO₂ < CaO < Cr₂O₃ < Ga₂O₃ (Fig. 1A). The addition of metal oxides on TiO₂ surface also results in higher propylene yields compared to bare TiO₂, with Ga₂O₃-TiO₂ sample reaching the value of 17.7% at 710 °C. In the case of M_xO_y-Al₂O₃ catalysts, catalytic activity is significantly improved for Ga₂O₃-Al₂O₃ and Cr₂O₃-Al₂O₃ samples (Fig. 1B) whereas propane conversion curves for SnO-Al₂O₃ and CaO-Al₂O₃ were found to be identical with that of bare Al₂O₃. Propylene yield was found to be higher for Cr₂O₃-Al₂O₃ sample reaching the value 19.5% at 625 °C. The catalytic performance for M_xO_v-SiO₂ catalysts increases in the **Figure 1.** Conversion of propane as a function of reaction temperature obtained over (A) M_xO_y -TiO₂ (B) M_xO_y -Al₂O₃ and (C) M_xO_y -SiO₂ for the ODP reaction. order SiO₂ (none) < CaO < SnO₂ < Ga₂O₃ < Cr₂O₃ (Fig. 1C). Propylene yield is also improved with the addition of M_xO_v on SiO₂ surface, with SnO₂-SiO₂ exhibiting the superior value of 30% at 730 °C. In all cases the main products detected were C₃H₆, CO, CH₄ και C₂H₄. Selectivity toward C₃H₆ (S_{C3H6}) was found to be higher for the catalysts containing Ga₂O₃ and Cr₂O₃ and progressively decreases with increasing temperature for all catalysts examined with the exception of the CaO containing samples where S_{C3H6} remains almost stable in the entire temperature range examined. Carbon monoxide selectivity also decreases with increasing temperature above 660 °C and was found to be higher for CaO-TiO₂ catalysts. Production of both CO and C₃H₆ indicates that, under the present experimental conditions, the desired reaction of oxidative dehydrogenation of propane takes place whereas part of the produced CO may be due to the RWGS reaction. Selectivities toward CH₄ και C₂H₄ exhibit similar behavior with temperature and increases slightly for temperatures higher than 650 °C, most possibly due to enhancement of their production via C₃H₈ hydrogenolysis and C₃H₈ or C₃H₆ decomposition reactions. For M_xO_y-SiO₂ catalysts S_{CH4} and S_{C2H4} at a given temperature decrease significantly when a metal oxide is added on SiO₂ surface implying that the aforementioned side reactions are suppressed with the use of SiO₂-based composite oxides. This is also the case for Ga₂O₃-Al₂O₃, Cr₂O₃-Al₂O₃ and CaO-TiO₂ samples at low reaction temperatures. Comparison of the results obtained for the three series of catalysts investigated showed that Al₂O₃- and SiO₂-based composite oxides exhibit higher C₃H₈ conversions compared to M_xO_y-TiO₂ samples. Propylene yields are generally higher when M_xO_y is dispersed on TiO₂ or SiO₂ surface compared to Al₂O₃ with the exception of Ga₂O₃-Al₂O₃ catalyst which exhibited optimum performance with $Y_{\rm C3H6} = 19\%$ already at 600 °C. ## 4. Conclusions Results of the present study showed that catalytic performance for the ODP reaction with CO_2 is significantly improved with the addition of metal oxides on TiO_2 , Al_2O_3 or SiO_2 surface. Both catalytic activity and C_3H_6 yield depend strongly on the nature of M_xO_y with the Ga_2O_3 and Cr_2O_3 containing samples exhibiting superior performance. Simultaneous production of both C_3H_6 and CO indicates that oxidative dehydrogenation of propane and RWGS reaction take place in parallel. The undesired reactions of C_3H_8 hydrogenolysis and C_3H_8 or C_3H_6 decomposition leading to CH_4 and C_2H_4 production can be significantly suppressed with the addition of the appropriate metal oxide on TiO_2 , Al_2O_3 or SiO_2 surface. #### References - 1. Amghizar, I., Vandewalle, L.A., Van Geem, K.M., Marin, G.B.: New Trends in Olefin Production. Engineering 3(2), 171-178 (2017). - 2. Tóth, A., Halasi, G., Bánsági, T., Solymosi, F.: Reactions of propane with CO₂ over Au catalysts. Journal of Catalysis (337), 57-64 (2016). - 3. Atanga, M.A., Rezaei, M., Jawad, A., Fitch, M., Rownaghi, A.A.: Oxidative Dehydrogenation of Propane with Carbon Dioxide. Applied Catalysis B: Environmental 220, 429-445 (2018). - 4. Panagiotopoulou, P.: Hydrogenation of CO₂ over supported noble metal catalysts. Applied Catalysis A: General 542, 63-70 (2017). - 5. Solymosi, F., Tolmacsov, P.: Decomposition of Propane and Its Reactions with CO₂ Over Alumina-Supported Pt Metals. Catalysis Letters 83, 183-186 (2002).